Power MOSFET

40 V, 111 A, 4.2 m Ω

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses

Parameter

Drain-to-Source Voltage

Gate-to-Source Voltage

Continuous Drain

Power Dissipation

Continuous Drain

Power Dissipation

Operating Junction and Storage

Single Pulse Drain-to-Source Avalanche

Lead Temperature for Soldering Purposes

Source Current (Body Diode)

Energy (L = 0.1 mH)

(1/8" from case for 10 s)

Current $R_{\theta JA}$

R_{0JA} (Note 1)

Current R_{0.IC}

 $R_{\theta JC}$ (Note 1)

Pulsed Drain

Temperature

Current

(Note 1)

(Note 1)

- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

T_A = 25°C

 $T_A = 70^{\circ}C$

 $T_A = 25^{\circ}C$

 $T_A = 70^{\circ}C$

 $T_C = 25^{\circ}C$

 $T_C = 70^{\circ}C$

 $T_C = 25^{\circ}C$

 $T_{\rm C} = 70^{\circ}{\rm C}$

t_p = 10 μs

Symbol

V_{DSS}

V_{GS}

 I_D

 P_{D}

 I_D

 P_D

IDM

T_J, T_{STG}

ls

EAS

IAS

 T_L

40

±20

20

16

3.1

1.9

111

89

96

61

443

-55 to

+150

111

134

52

260

V V

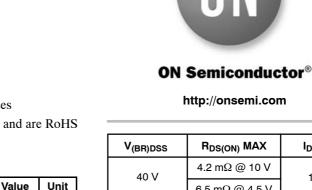
A

W

Α

W

Α

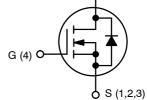

°C

Δ

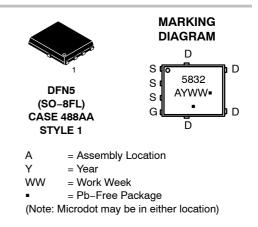
mJ

А

°C


MAXIMUM RATINGS (T, = 25°C unless otherwise stated)

Steady State


http://onsemi.com		
(BR)DSS	R _{DS(ON)} MAX	
40 V	4.2 mΩ @ 10 V	
40 V	6.5 mΩ @ 4.5 V	
		_
	D (5)	

I_D MAX

111 A

N-CHANNEL MOSFET

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain) (Note 1)	$R_{\theta JC}$	1.3	
Junction-to-Ambient Steady State (Note 1)	$R_{ hetaJA}$	40	°C/W
Junction-to-Ambient Steady State (Note 2)	$R_{\theta JA}$	75	

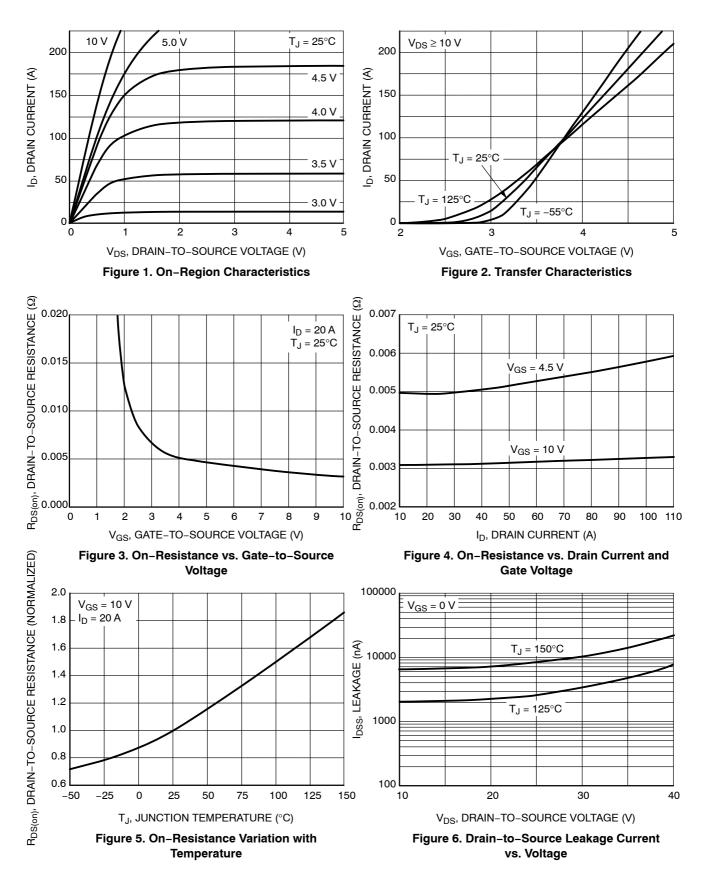
Surface-mounted on FR4 board using 1 sq-in pad 1.

(Cu area = 1.127 in sq [2 oz] inclusing traces).

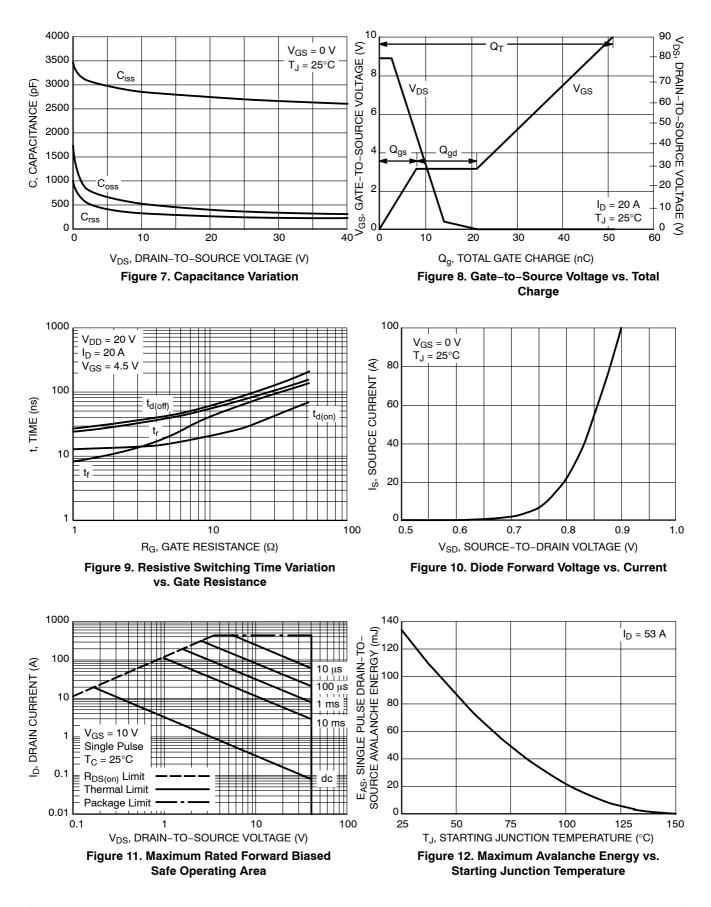
2. Surface-mounted on FR4 board using 0.155 in sq (100mm²) pad size.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTMFS5832NLT1G	DFN5 (Pb–Free)	1500/Tape & Reel


+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J				34.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 40 V	T _J = 25 °C			1	μΑ
			T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 0 V, V_{GS}	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.0		3.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				6.4		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		3.1	4.2	
		V _{GS} = 4.5 V	I _D = 20 A		5.0	6.5	mΩ
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 20 A			21		S
CHARGES, CAPACITANCES & GATE RESIS	TANCE						•
Input Capacitance	C _{ISS}			2700			
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1 MHz	z, V _{DS} = 25 V		360		pF
Reverse Transfer Capacitance	C _{RSS}				250		
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 20 V; I_{D} = 20 A			25		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 2	0 V; I _D = 20 A		51		nC
Threshold Gate Charge	Q _{G(TH)}				2.0		
Gate-to-Source Charge	Q _{GS}				8.0		
Gate-to-Drain Charge	Q _{GD}	V _{GS} = 4.5 V, V _{DS} = 2		12.7		-	
Plateau Voltage	V _{GP}				3.2		V
Gate Resistance	R _G				1.2		Ω
SWITCHING CHARACTERISTICS (Note 4)				l			
Turn-On Delay Time	t _{d(ON)}				13		
Rise Time	t _r	V _{GS} = 4.5 V, V _{DS} = 20 V,			24		1
Turn-Off Delay Time	t _{d(OFF)}	$I_{\rm D} = 10 \text{ A}, \text{ R}_{\rm G} =$	= 1.0 Ω		27		ns
Fall Time	t _f				8.0		1
Turn–On Delay Time	t _{d(ON)}				10		1
Rise Time	t _r	V_{GS} = 10 V, V_{DS} = 20 V, I _D = 10 A, R _G = 1.0 Ω			18		- ns
Turn-Off Delay Time	t _{d(OFF)}				32		
Fall Time	t _f				5.0		
DRAIN-SOURCE DIODE CHARACTERISTIC				1	I		1
Forward Diode Voltage	V _{SD}	$V_{GS} = 0 V,$ $I_{S} = 5 A$	T _J = 25°C		0.73	1.2	
			T _J = 125°C		0.57		V
Reverse Recovery Time	t _{RR}				28.6		
Charge Time	ta	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 10 A			14		ns
Discharge Time	t _b				14.5		
Reverse Recovery Charge	Q _{RR}				23.4		nC

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

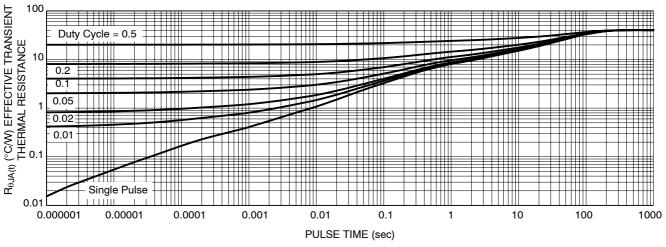
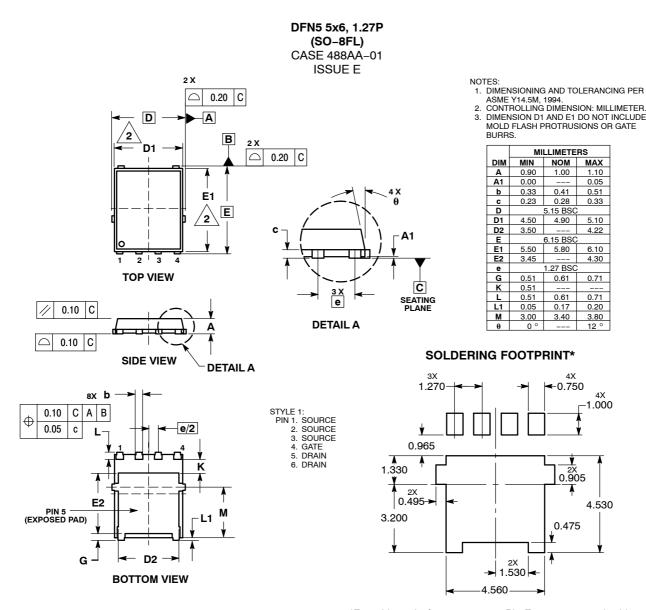



Figure 13. Thermal Response

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and expenses hard engined in active copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative